Solutions to the 75 th William Lowell Putnam Mathematical Competition

نویسنده

  • Lenny Ng
چکیده

If n− 1 is prime, then the lowest-terms numerator is clearly either 1 or the prime n−1 (and in fact the latter, since n−1 is relatively prime to n and to (n−2)!). If n− 1 is composite, either it can be written as ab for some a 6= b, in which case both a and b appear separately in (n− 2)! and so the numerator is 1, or n− 1 = p2 for some prime p, in which case p appears in (n− 2)! and so the numerator is either 1 or p. (In the latter case, the numerator is actually 1 unless p = 2, as in all other cases both p and 2p appear in (n−2)!.)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solutions to the 66 th William Lowell Putnam Mathematical Competition

We now construct the bijection. Given a rook tour P from (1, 1) to (n, 1), let S = S(P ) denote the set of all i ∈ {1, 2, . . . , n} for which there is either a directed edge from (i, 1) to (i, 2) or from (i, 3) to (i, 2). It is clear that this set S includes n and must contain an even number of elements. Conversely, given a subset S = {a1, a2, . . . , a2r = n} ⊂ {1, 2, . . . , n} of this type ...

متن کامل

The 69 th William Lowell Putnam Mathematical Competition

A3 Start with a finite sequence a1, a2, . . . , an of positive integers. If possible, choose two indices j < k such that aj does not divide ak, and replace aj and ak by gcd(aj , ak) and lcm(aj , ak), respectively. Prove that if this process is repeated, it must eventually stop and the final sequence does not depend on the choices made. (Note: gcd means greatest common divisor and lcm means leas...

متن کامل

Solutions to the 69 th William Lowell Putnam Mathematical Competition

A–1 The function g(x) = f (x,0) works. Substituting (x,y,z) = (0,0,0) into the given functional equation yields f (0,0) = 0, whence substituting (x,y,z) = (x,0,0) yields f (x,0) + f (0,x) = 0. Finally, substituting (x,y,z) = (x,y,0) yields f (x,y) = − f (y,0) − f (0,x) = g(x)−g(y). Remark: A similar argument shows that the possible functions g are precisely those of the form f (x,0) + c for som...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014